医療統計学Medical Statistics
科目責任者稻岡 秀検 (※)
担当者稻岡 秀検 (※), 守田 憲崇 (※)
科目概要2年 (2単位・選択) [リハビリテーション学科 作業療法学専攻]
2年 (2単位・選択) [リハビリテーション学科 言語聴覚療法学専攻]
2年 (2単位・必修) [リハビリテーション学科 視覚機能療法学専攻]

授業の目的

医学研究(リハビリテーション)の領域で、チーム医療の一員として患者の治療に貢献できるリハビリテーションの知識と技術を科学的根拠に基づいて提供するために、しばしば登場する代表的なデータ処理(統計学的有意差検定)手法の内容を区別可能で、必要に応じて自身で解析方法を判別し、データ解析できる。
この科目は学位授与方針(ディプロマ・ポリシー)の(OT)①,(ST)②④⑤,(OV)①②③④に関連する。

教育内容・教育方法

【教育内容】
講義で紹介する統計学的有意差検定の知識を基礎に、統計ソフトを用いて、サンプルデータを解析し、その方法と解析結果の意味を学習する。将来、臨床の現場でデータを解析した時に統計ソフトが出力する内容を理解できるようにする。

【教育方法】
授業形態:講義
パワーポイントを用いた講義を行い、講義中に1人1台のPCを用いた演習を行う。講義中に簡単な統計演算のプログラムを作成し、次回の講義でその内容について解説する。
レポート課題については、レポート提出の翌週に、その内容について解説する。

授業内容

項目授業内容担当者日時
第1回【対面】
データの要約
要約統計量を使用したデータの要約方法とその意味について学習する。(平均値、中央値、四分位点、ヒストグラム、データのばらつき:標準偏差、標準誤差)守田 憲崇
9/1①
第2回【対面】
データの分布
データの分布形状(パラメトリック、ノンパラメトリック)と外れ値の扱い方を学習する。守田 憲崇
9/8①
第3回【対面】
統計学的検定総論
統計学検定の考え方について学習する。(2種類の過誤、仮説検定の手順、p値と有意水準、統計学的有意性と生物学的有意性)守田 憲崇
9/15①
第4回【対面】
平均値の比較
独立した2群間の検定、関連のある2群間の検定について学習する。(t検定、対応のあるt検定)守田 憲崇
9/22①
第5回【対面】
多群の検定1
1要因多群の検定、多群の組み合わせの検定を学習する。(分散分析と多重比較)守田 憲崇
9/29①
第6回【対面】
多群の検定2
2要因多群の検定、多群の組み合わせの検定を学習する。(分散分析と多重比較)守田 憲崇
10/6①
第7回【対面】
相関関係の検定
ピアソンの相関係数の検定、スピアマン順位相関係数の検定を学習する。守田 憲崇
10/13①
第8回【対面】
中間試験
第1回から第7回までの内容について試験を行い、終了後に試験内容について解説を行う。守田 憲崇
10/20①
第9回【対面】
二項分布確率の検定
適合度の概念と二項分布について学ぶ。その後、二項確率の検定について、正確検定と近似検定について学ぶ。稻岡 秀検
10/27①
第10回【対面】
多項分布
多項分布について学び、カイ二乗統計量を使った適合度の正確検定と近似検定について学ぶ。稻岡 秀検
11/10①
第11回【対面】
尤度比
尤度関数と尤度比について学び、尤度比を使った適合度の正確検定と近似検定について学ぶ。稻岡 秀検
11/17①
第12回【対面】
分割表
2×2分割表のサンプリングデザインと確率モデルについて学び、2×2分割表の独立性の帰無仮説についてオッズ比による表現を学ぶ。稻岡 秀検
11/24①
第13回【対面】
Fishserの正確検定
超幾何分布について学び、Fisherの正確検定について学ぶ。その後、2×2分割表の正確検定と近似検定について学ぶ。稻岡 秀検
11/25⑤
第14回【対面】
相関係数
共分散と相関係数について学ぶ。稻岡 秀検
12/1①
第15回【対面】
最小二乗法
回帰モデルと回帰式について学び、最小二乗法ついて学ぶ。また、相関係数と寄与率について学ぶ。稻岡 秀検
12/8①

◆実務経験の授業への活用方法◆
研究所での経験を踏まえ、実際に測定されるデータのばらつき等をどう評価するかを概説し、測定誤差が結果の解釈にどのように影響するかを具体例を通じて検討する。
病院での臨床経験を踏まえ、医療における統計学の重要性及び実際の統計を使用したデータ処理がどのように展開されるのかを概説する。

到達目標

1. 基礎的なデータ処理用語とその意味が具体的に説明できる。(*知識・理解)
2. 卒業研究等や将来臨床の現場でよく使われる統計学的有意差検定手法を対象データにより適切に選択しコンピュータ処理ができる。(*技能)
3. 卒業研究等や将来臨床の現場でよく使われる統計学的有意差検定手法によるデータ処理結果を解釈し、具体的に説明できる。(*知識・理解)

評価基準

授業内試験(30%)、レポート(40%)、定期試験(30%)で評価する。

準備学習等(予習・復習)

【授業時間外に必要な学習時間:60時間】
*コンピュータの操作(エクセル)に関し復習し慣れておくこと。
*次回の授業範囲の用語について予習し、授業後には授業内容についての概要をA4用紙1枚以内にまとめること。
*授業中に与えられた課題を完成できなかったときは、次回までに完成させること。
*授業を欠席した場合は、欠席した回の授業内容を次回までに担当教員に確認し、自習しておくこと。

教材

種別書名著者・編者発行所
教科書資料を配付する
参考書新・涙なしの統計学Derek Rowntree (著)、加納 悟 (訳)新世社、2001
参考書新版 学会・論文発表のための統計学 統計パッケージを誤用しないために浜田知久馬真興交易医書出版部、2012
参考書独習統計学24講 医療データの見方・使い方鶴田陽和朝倉書店、2013
参考書独習統計学24講 分割表・回帰分析・ロジステック回帰鶴田陽和朝倉書店、2016
参考書医学・薬学データの統計解析データの整理から交互作用多重比較まで広津千尋東京大学出版会、2004
参考書入門はじめての分散分析と多重比較石村貞夫、石村光資郎東京図書、2008
参考書入門はじめての多変量解析石村貞夫、石村光資郎東京図書、2007

備考・その他

科目ナンバリングコード: (OT)OT201-SF26, (ST)ST201-SF27, (OV)OV201-SF14